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Random field Ising systems on a general hierarchical lattice: Rigorous inequalities
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Random Ising systems on a general hierarchical lattice with both random fields and random bonds are
considered. Rigorous inequalities between eigenvalues of the Jacobian renormalization matrix at the pure fixed
point are obtained. These inequalities lead to upper bounds on the crossover exponents$f i%.
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Despite the many years of research and the large num
of researchers working on the subject, the study of criti
behavior of random systems has led to only few exact
sults. On the other hand, some of these results@1,2# played
an important role, especially in the context of the rand
field problem. In a recent study@3# we considered a random
bond Ising system on a general hierarchical lattice, where
renormalization group~RG! transformation is exact@4#, and
obtained inequalities concerning the eigenvalues$l i% of the
Jacobian renormalization matrix, at the pure fixed point. T
purpose of the present study is to show that similar inequ
ties can be obtained if random fields are included. In cont
to the case of random bonds and zero fields, correlations
now generated by the renormalization flow. Nevertheles
appears that these correlations are, first, confined to the fi
so that the distribution of bonds is left uncorrelated, a
second, restricted to nearest-neighbor~NN! correlations. It is
important to emphasize that these short-ranged field corr
tions are generated by the RG transformation even if
assumes no correlations to begin with, and that the rang
correlations does not increase under the transformation.
results are relevant to real lattices, since some approxim
RG schemes on real lattices are in fact exact RG scheme
hierarchical lattices~Migdal-Kadanoff @5,6# and others@7#!
and since it is believed that the critical behavior of an Is
system on a real lattice can be mimicked by that behavio
a properly chosen hierarchical lattice@8–11#.

We consider a general hierarchical lattice described sc
matically in Fig. 1. The shaded area shown in~a! consists of
a set of lattice points where some of the pairs are joined
~b!, a typical shaded area is represented. The solid lines
bonds to be iterated in constructing the lattice while
dashed ones are not to be iterated. The bold lines repre
the possibility for some bonds to be strengthened, nam
multiplied by some constant. The random Ising system
represented by the dimensionless Hamiltonian

2H5(
( i , j )

Ji j s is j1(
i

his i , ~1!

where (i , j ) refers to connected pairs only. All three types
bonds of Fig. 1~a! then carry a couplingJab

12 ~for the bonds
joining sitesa and b), while each site carries a fieldha

12.
~Note that one of the members of the pairab may be either
1 or 2.!

The renormalized couplings and renormalized fields
given by
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J̃125 f J$Jab
12 ,ha

12% ~2a!

and

h̃i5hi1(
j 51

z̃i

f h$Jab
12 ,ha

12%, i 51,2, ~2b!

respectively, whilez̃i is the coordination number of the sitei
on the renormalized lattice. Both,f J and f h , depend only on
couplings and fields within the rescaling volume associa
with the pair of sites (1,2)@the shaded area in Fig. 1~a!#.
Equation~2a! implies thatJ̃i j andJ̃lm are not correlated if the
pairs (i , j ) and (l ,m) are not identical. This does not hold fo
the renormalized fields. Due to the sum in Eq.~2b! over NN
sites on the renormalized lattice, it is clear that even if th
are no correlations to begin with, correlations are genera
by the RG transformation, between fields on NN sites a
fields and couplings on a site and a bond attached to it.@For
example, in Fig. 1~b!, the following pairs are correlated

FIG. 1. A general hierarchical lattice is described schematica
In ~a!, the shaded area consists of a set of lattice points,a,b, . . . ,
where some of the pairs are joined. In~b!, a typical shaded area i
represented. The solid lines are bonds to be iterated in constru
the lattice, while the dashed ones are not to be iterated. The
lines represent the possibility for some bonds to be strengthe
multiplied by some constant.
©2001 The American Physical Society24-1
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(h̃1 ,h̃2), (J̃12,h̃1), and (J̃12,h̃2).# It is easier to deal with
such correlations by considering a bond-field Hamiltonian
the form

2H5(
( i , j )

@Ji j s is j1hi j ~s i1s j !#, ~3!

in which the random variables are the couplingsJi j and the
bond fieldshi j . The set of RG transformation equations
now given by

J̃125 f J$Jab
12 ,hab

12 % ~4a!

and

h̃125 f h$Jab
12 ,hab

12 %. ~4b!

Equations~4!, therefore imply that none of the two coupling
J̃i j or h̃i j , is correlated with any of the two couplingsJ̃lm or
h̃lm , if the pairs (i , j ) and (l ,m) are not identical.

In terms of the bond fields, the site fields are given by

hi5
1

2 (
j ( i )

hi j , ~5!

wherej ( i ) indicates that the sum is over all sitesj connected
to i. A similar bond-field Hamiltonian~3! was already used
in the past @12–14#, only with the additional term
( ( i , j )hi j

† (s i2s j ). Note that it is necessary to include th
dagger fields only if one assumes that the site fields are
tially uncorrelated. Since, however, the initial state of no
correlated site fields is not preserved by RG transforma
andnn correlations between site fields are developed, th
is no reason to start with uncorrelated fields on the sites

We assume the existence of a ferromagnetic fixed poin
$Jab%5J* and $hab%50. We denote the departure ofJab
from J* by dJab and define the moments as

G i j 5^~dJab! i~hab! j&. ~6!

Clearly at the fixed pointG i j* 50. We will be interested in the
recursion relations of the moments near the pure fixed po

G̃ i j 5Gi j $G lm%. ~7!

The recursion relations above are obtained from the re
sion relations for the local couplings

d J̃125 (
(a,b)

S ] f J

]Jab
D *

dJab1
1

2 (
(a,b)

S ]2f J

]Jab
2 D *

~dJab
2 !

1
1

2 (
(a,b)

S ]2f J

]hab
2 D *

hab
2 1••• ~8a!

and
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h̃125 (
(a,b)

S ] f h

]hab
D *

hab1 (
(a,b)

S ]2f h

]Jab]hab
D *

dJabhab

1•••, ~8b!

where (•••)* denotes evaluation at the pure fixed poin
Note that although we are interested only in the expansio

G̃ i j to first order inG lm , we still need, in principle, orders
higher than linear in Eqs.~8! above. Note also the term
missing in the expansions due to the different parities oJ
andh. The renormalized moments are given by

G̃ i j 5 (
(a,b)

F S ] f J

]Jab
D * G iF S ] f h

]hab
D * G j

G i j 1 (
(a,b)

(
l ,m

Alm
i j G lm ,

~9!

where clearly, in the last sum on the right-hand side of
above, l 1m. i 1 j . Also the parity ofm in the sum must
equal the parity ofj. The Alm

i j ’s with l 1m. i 1 j always in-
volve derivatives higher than the first of at least one of
f ’s. We arrange next theG i j ’s using a single index

Gk5G i j , ~10!

with

k5
~ i 1 j !~ i 1 j 11!

2
1 j 11. ~11!

This brings Eq.~9! into the standard matrix notation

G̃m5AmnGn . ~12!

It is not difficult to show that ifk1 corresponds to (i , j ) and
k2 to (l ,m) thenl 1m. i 1 j impliesk2.k1. This means that
the matrixA is block-triangular~Fig. 2!. Consider next one
of the blocks along the diagonal ofA. From the expansions
~8! and ~9! it follows directly that the only contribution to
(d J̃) i(h̃) j in (dJ) l(h)m such thatl 1m5 i 1 j , is the one with
l 5 i andm5 j . The final conclusion thus is that the matrixA

FIG. 2. A general schematic description of a ‘‘block-triangula
matrix is shown.B1 , . . . ,B4 represent the blocks along the ma
diagonal. The gray area marked withX indicates the presence o
nonzero matrix elements while in the area marked with 0, all e
ments are zero.
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is triangular, so that its eigenvalues are just its diago
terms. The eigenvalues of the Jacobian transformation ma
are thus

l i j 5 (
(a,b)

F S ] f J

]Jab
D * G iF S ] f h

]hab
D * G j

. ~13!

This leads now to a number of interesting inequalities.
~a! All eigenvalues are positive,

l i j >0. ~14a!

~b! All eigenvalues are ordered,

l i 11, j,l i j and l i , j 11,l i j . ~14b!

~c! All eigenvalues obey a convexity condition,

l i j lk j>l i 1k, j and l i j l ik>l i , j 1k . ~14c!

~d! All eigenvalues obey

~l i j !
2<l i 1k, j 1 ll i 2k, j 2 l , ~14d!

where, in~d!, k52 i , . . . ,i and l 52 j , . . . ,j .
Proof: In a recent paper@3# we have considered random

bond Ising systems for which the subset$l i0% is considered.
There, we have already proven properties~a!–~c! and our
proof here will follow the same line.

Properties~a! and ~c! are proven by showing that

] f J

]Jab
~J* ,0!>0 ~15a!

and

] f h

]hab
~J* ,0!>0. ~15b!

We have to consider then the specific transformations ge
ated by

2H̃5 ln tr8e2H, ~16!

where tr8 represents trace only over the subset of spins$sa%
internal to the rescaling volume, not including the exter
spins s1 and s2. The renormalized couplings and field
given by Eqs.~4!, can now be written in the forms

J̃1252 1
4 tr12@s1s2H̃#, ~17a!

h̃1252 1
4 tr12@~s11s2!H̃#, ~17b!

where tr12 indicates trace over the two external spinss1 and
s2. The derivatives ofJ̃12 with respect toJab and h̃12 with
respect tohab are thus given by

] J̃12

]Jab
~J* ,0!5

1

4
tr12~s1s2!^sasb&12 ~18a!

and
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]h̃12

]hab
~J* ,0!5

1

4
tr12~s11s2!^sa1sb&12, ~18b!

where^•••&12 is the average with respect toH with s1 and
s2 held fixed. In calculating the above derivatives at the p
fixed point, we use the following symmetry properties of t
system:

^sasb&11* 5^sasb&22* , ~19a!

^sasb&12* 5^sasb&21* , ~19b!

^sa&11* 52^sa&22* , ~19c!

^sa&12* 52^sa&21* , ~19d!

to obtain

] J̃12

]Jab
~J* ,0!5

1

2
@^sasb&11* 2^sasb&12* # ~20a!

and

]h̃12

]hab
~J* ,0!5

1

2
@^sa1sb&11* #. ~20b!

Here the sign indices specifically indicate the state of
spinss1 ands2 and the * indicates that the average is wi
respect to the pure fixed point Hamiltonian

2H* 5J* (
( i , j )

s is j . ~21!

Now, according to the GKS inequalities@15,16#, if all the
many-spin couplingsJA5ha ,Jab , . . . in a general Ising
system are positive, all the many-spin correlations^sA&
5^sa&,^sasb&, . . . must obeŷ sA&>0. Using Eqs.~20!,
the averages are taken with respect to the pure ferromag
Hamiltonian~21!, where the two external spins of each of th
rescaling volumes, which are held fixed, serve effectively
local fields. When these effective fields are held both po
tive, the GKS inequalities hold, so that

^sa&11* >0 and ^sasb&11* >0, ~22!

which is enough already to prove inequality~15b!. Inequality
~15a! can be easily shown to hold using, in addition to t
GKS inequalities, other rigorous inequalities, just recen
proven @17#, also concerning the many-spin correlations
general Ising systems. It states that if all the many-spin c
plings JA are positive again, the absolute value of all t
many-spin correlationŝsA& does not increase when th
value of any of the couplings is reduced, taking any value
the interval @2JA ,JA#. According to this, it is clear tha
under reversal of the11 state of any of the two externa
spins, the many-spin correlations cannot increase. So,
arrive at the conclusion that

^sasb&11* >^sasb&12* ~23!
4-3
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and ~15a! is also proven. This completes the proof of pro
erties~a! and ~c!.

We turn now to property~b!. Here we need to show tha

] f J

]Jab
~J* ,0!,1 ~24a!

and

] f h

]hab
~J* ,0!,1. ~24b!

at any finite temperature. But, referring to Eqs.~20! again, it
is clear that

1
2 @^sasb&11* 2^sasb&12* #< 1

2 @ u^sasb&11* u1u^sasb&12* u#

<1 ~25a!

and that

1
2 @^sa&11* 1^sb&11* #< 1

2 @ u^sa&11* u1u^sb&11* u#<1,
~25b!

while the equality sign can hold only at zero temperatu
This proves property~b!.

We are left now with property~d!. Here we use the more
general definition of a scalar product, (u,v)[( iwiui* v i

where; i , wi>0 and the corresponding Schwartz inequali
which reads (( iwiui* v i)

2<( iwi uui u2( jwj uv j u2 ~here is the
only place where the * represents complex conjugate!. We
replace, next, the sum over the single indexi with the double
index (ab) and identify

uab[F S ] f J

]Jab
D * G rF S ] f h

]hab
D * Gs

~26a!

with r 50, . . . ,i ands50, . . . ,j ,

vab[F S ] f J

]Jab
D * G pF S ] f h

]hab
D * Gq

~26b!

with p50, . . . ,i 2r andq50, . . . ,j 2 l , and

wab[F S ] f J

]Jab
D * G i 2r 2pF S ] f h

]hab
D * G j 2s2q

, ~26c!

to obtain

~l i j !
2<l i 1r 2p, j 1s2ql i 2r 1p, j 2s1q , ~27!
03612
-

.

,

where we have used the fact that all partial derivatives
real and positive. All that is left now is to denoter 2p5k
with k52 i , . . . ,i and, similarly, s2q5 l with l 5
2 j , . . . ,j , which completes the proof of property~d!.

In addition to that, denoting bymJ,1 and mh,1, the
maximal values of] J̃i j /]Jab and ]h̃i j /]hab , respectively,
we obtain

l i j <lklmJ
i 2kmh

j 2 l , with k50, . . . ,i and l 50, . . . ,j ,
~28!

so that we have also proven that the number of relev
interactions at the pure fixed point is finite. The only case
which the equality sign holds is the diamond hierarchi
lattice ~DHL! @4,18#, where all bonds are equivalent. Fro
~28! follows an inequality for the crossover exponents:

f i j ,11
~ i 21!ln mJ1 j ln mh

ln l10
,1, i 1 j 52,3, . . . ,

~29!

where f i j 5yi j /y10, yi j 5 ln lij /ln b, and b is the rescaling
factor. The condition for criticality of the pure fixed point i
max(l20,l11,l02),1, while else, we expect a random crit
cal point with a different set of critical exponents. It is inte
esting to note that it was just recently shown@19# that even
for the random bond Ising system, the Harris criterion
pure criticality @20#, ap,0 (ap being the specific heat ex
ponent! is equivalent to the obvious requirement,l20,1,
only in the special case of the DHL. In the more gene
case, it was shown thatap<f20 so that the Harris criterion is
only a necessary condition for pure criticality to hold a
counter examples whereap,0 andf20.0 have been pre-
sented. The analogous result for the random system isgp
<f02 (gp being the susceptibility exponent of the pure sy
tem! but sincegp turns out always to be positive, the rando
field is always relevant at the pure critical point.

We wish to conclude by emphasizing that the inequalit
proven here hold not only for exact RG transformations
HL’s but also for all other renormalization schemes~such as
MK scheme@5,6#! in which the renormalized couplings o
fields are not correlated or even in cases where it is clear
the correlations are not important@21#.
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